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A general  d i f ferent ia l  method is developed and described which determines the Ar-  
rhenius  parameters ,  energy of activation and the preexponential  factor, as functions of de- 
gree of  convers ion f rom sets of two or  more experiments with differing thermal  programs. 
(These  exper iments  may be  pe r fo rmed  at  any combinat ion of  isothermal,  constant  heat ing 
ra te  or o the r  t empera tu re  programs.)  The method tests to see whether  or  not  the kinetics 
follow the equation,  

f ( a )  = ( l - - a )  n, 

and calculates the correct  reaction order,  n, when such an equat ion is applicable. The correct  
energy of  activation,  E, is de te rmined  as a function of bo th  t empera tu re  and conversion. The 
correct  preexponent ia l  term, A, is calculated for all eases described by equation, d ( a ) / d t  = f 
(a )  A exp(-EIRT), except for the 'autocatalytic '  case in which f ( a  ) = 0) = 0. Calculation of 
pa rame te r s  for  equat ions  involving o the r  functions for  f ( a )  will be  described in a sub- 
sequent  paper.  

In the analysis of the kinetics of heterogeneous condensed phase reac- 
tions, it is found convenient to define an extent of reaction or fractional con- 
version term, f(a), where 

a = (xi - x  ) / (x i  - x l )  (1) 

and the fraction remaining is given by 

( 1 ~  ) = (x - x f  )/ (~i -xf  ) (2) 
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where x is the measured value for the extensive variable (mass, enthalpy, 
volume, etc.) and xi and xf are respectively its initial and final values at the 
beginning and at the end of the reaction of interest. It is often convenient to 
use this extent of reaction variable when only a part of the experimental data 
range is being analyzed or several different experiments are being com- 
pared. The equations and methods are developed in terms of a in this 
paper. However, one may substitute for a, mutatis mutandis, the values for 
the measured change in the extensive variable, x, (i.e., mass, volume, enthal- 
py, etc.) without any loss of general applicability. 

The most general differential equation commonly used to describe the 
reaction rate is 

da / dt = f (a )k (T) (3) 

where rate of change of alpha is expressed as a product of separable func- 
tions for alpha and temperature. 

The term, f (a) ,  can be fitted occasionally by the equation 

f (a )  = (1- a )n (4) 

and is some other cases by more complex expressions. (It is probably impos- 
sible to overemphasize the fact that the kinetics of most of the reactions in 
thermal analysis are not described well by Eq. (4). Analysis for other forms 
of f ( a )  are described in a subsequent paper [1]. Fortunately, the method 
developed herein tests the assumption in Eq. (4) and calculates the Ar- 
rhenius parameters independently of the form o f f  (a) .)  

A fit of the temperature dependent expression, k (T),  by the Arrhenius 
equation, 

k (T) = A exp(-E/RT), (5) 

is almost always attempted. In Eq. (5), A is the preexponential factor, E is 
the energy of activation, R is the gas constant, and T is the absolute 
temperature. 

The differential method is fully developed here so as to apply to any set 
of experiments with differing temperature programs. The constancy of EIR 
with a and temperature is tested. If E/R is constant, the correct value for A 
is determined, and then the applicability of Eq. (4) is tested. Methods to 
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determine the parameters of several other forms o f f ( a  ) are given In a sub- 
sequent paper [1]. 

A differential method for the analysis of reaction kinetics was first 
developed by van't Hoff  [2]. In his method, if two experiments are carried 
out at different initial concentrations, c~ and cz, their rates are 

- dcl / dt = k c n and - dcz / dt = k c~. If one takes logarithms, then upon 
rearrangement, it is found that, 

n= (ln(-d l/dt)-ln(-d 2/dt))/(inc -lnc2) (6) 

from which n, the order of reaction, is calculated. 
This differential method later was extended by Letort [3] to apply to a 

single isothermal experiment. If Eq. (4) is substituted into Eq. (3) and 
logarithms taken, one obtains 

In d a / d t  = n l n ( 1 - a )  + I n k ( T )  (7) 

Therefore, one may plot the logarithm of the rate, In d a / d t ,  as a function of 
the logarithm of the fraction remaining, In (1--a), and obtain the logarithm 
of the rate constant, In k (T) ,  from the intercept at a equal zero. If the plot 
is linear, then its slope is equal to the reaction order, n. Letort  [3] pointed 
out the superiority of this technique over those which apply integrated forms 
of the f ( a )  equations. The order is determined directly (not assumed as in 
integral methods) so that fractional orders may be obtained. Also any 
change in the order during the reaction is observed directly from changes in 
the slope from the plot of Eq. (7). Letort  also pointed out that the "initial 
rate", Vo, is obtained from this method so that if initial rates are obtained 
from several experiments performed at differing initial concentrations, Co, 
then one may write 

In Vo = no In Co + constants (8) 

and no, the "order as a function of initial data", may be compared with n, the 
"order as a function of time". The two orders may differ in cases for which 
the reaction kinetics is complex, that is, cases where intermediates and 
products affect the form of the rate equation and value of n. Thus this dis- 
tinction between the two orders can be useful in establishing reaction 
mechanism. ("Concentrations" are seldom meaningful or calculable in ther- 
mal analysis experiments. However, this distinction between the two reac- 
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tion orders may have some application in thermal analysis as a test for com- 
plexities in the kinetics. For example, the "order as a function of initial data" 
may be calculated from a series of thermogravimetric experiments which are 
performed at differing initial specimen weights and this value compared 
with the "order as a function of time" to test whether the reaction is irre- 
versible or reversible, i.e., whether the reaction kinetics are affected by the 
products.) 

The application of the differential technique for determining kinetics 
parameters to the nonisothermal experiments of thermal analysis was 
developed in the landmark paper in 1965 by Friedman [4]. In his method, 
Eqs (3) and (5) may be combined to obtain 

d a / d t  = f ( a  ),4 exp(-E/RT) (9) 

One obtains, upon taking logarithms, for a value of a, ai, 

In ( d a / d t ) i  = In f (a i )A-E/RTi ,  (10) 

where the subscript, i, refers to the value of the variable at ai degree of con- 
version. 

Thus Friedman demonstrated that, from Eq. (10), a plot of In da /dr  vs. 
1/T values at the same degree of conversion from a series of experiments at 
differing constant heating rates would result in a straight line with a slope of 
-E/R and an intercept of In Af (a)  for cases in which the Arrhenius Eq. (5) 
was followed. This procedure could be repeated at various degrees of con- 
version and resulting parallel straight lines would prove the constancy of 
E/R as the reaction proceeds. This was the first published "isoconversional" 
method for the determination of E/R from thermoanalytical data. It was fol- 
lowed closely by papers by Ozawa [5] and Flynn [6] who independently 
develped a similar 'integral' method in which data (logarithm heating rate, 
1/T) from integral curves were plotted at constant conversion to obtain E/R 
without the necessity of first determining da/dr. 

The f'n'st critical discussion of Friedman's' method was made by Flynn [7] 
in 1966, the year following its publication. He pointed out the advantages of 
the method (over the Ozawa-Flynn method), viz., 

1) successive approximations from the Doyle equation for the tempera- 
ture integral are unnecessary, 

2) differential methods give instantaneous values for the kinetics 
parameters and are not subject to cumulative errors, and 
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3) initial (boundary) conditions which are often poorly defined in ther- 
mal analysis and are needed for integral methods are unnecessary for dif- 
ferential methods. The chief disadvantages of Friedman's method (in 1966) 
were that it was tedious to obtaIn derivative values from thermal analysis 
curves and that such derivative curves often exhibited considerable ex- 
perimental scatter. These disadvantages undoubtedly were the reason for 
the much wider use and the much wider use and the much wider acceptance 
of the integral method over the differential isoconversional method in the 
1970 and 80's. However, the advent of computer interfacing with integrating 
and smoothing capabilities has rendered the disadvantages mentioned above 
irrelevant and several recent papers have emphasized the advantages of the 
Friedman differential method for calculating E/R [8-10]. 

There were two facets of the differential isoconversional method of 
Friedman which have been generally ignored. First of all, it is not necessary 
to use differing constant heating rates for the several experiments which are 
to be compared at various degrees of conversion, that is, any combination of 
differing temperature programs can be used. Secondly, in this method, the 
preexponential factor, A, can be separated from f ( a  ) and independently 
determined under rather general conditions. The general differential 
isoconversional method which is developed in the following section will in- 
clude these two greater capabilities. 

A general differential isoconversional method 

a) Calculation of the energy of activation: 

The basic equation for the differential isothermal method is Eq. (10). 
Two or more experiments are performed at differing temperature programs. 
For each experiment, values for temperature and da/dt are obtained for 
various values of al (e.g. a~ = 0.05, 0.10, 0.20 .... ,090, 0.95) covering the ex- 
perimental range. Values for E/R and In A f  (al) at each value of al are ob- 
tained from the slope and intercept of Eq. (10), or from the intercept and 
slope of Eq. (11), which is obtained from Eq. (10) from multiplication by 
temperature. 

Ti In (da/dr )i = Ti In A f  (ai ) - E/R (11) 

For an example, we take data for a first order reaction, f ( a  ) = (1--a), 
performed isothermally at temperatures of 600, 620, 640, 680, and 700 K. 
Figure 1 is a plot of In (da/dt  )i vs. 1/Ti for values of ai = 0.05, 0.20, 0.40, 
0.60, 0.80, 0.90 and 0.95. The parallel slopes of lines for each value of al give, 

J.. Thermal AnaL, 37, 1991 



298 FLYNN: A GENERAL DIFFERENTIAL TECHNIQUE 

from Eq. (10), values for E/R of 20.000 K. The intercepts (at 1/iq = infinity 
or Ti = 0) give values for l n A f ( a  ) for each of the above ai's. (These values 
will be used later to determine A and and the form o f f  ( a ) . )  

1 / T, 

0.0015 0.0016 

t5 
e "  . 

u 

lFlg. 1 ln(da/dt)  vs. 1/T for a first order reaction, E/R=20.O00 K, InA =25, at isothermal 
temperatures of 600, 620, 640, 660, 680 and 700 K, a = 0.05,.0.20, 0.40, 0.60, 0.80, 0.90 and 
0.95 

Figure 2 is a plot of Ti(da / dt )i vs. Ti for the same data and conditions as 
in Fig. 1. The slopes of the constant a lines are not parallel and, from 
Eq. (11), we see that these isoconversional lines intersect at Ti = 0 to give a 
value for E/R of 20.000 K. In Fig. 2, the slopes give values for l n A f ( a  )i, and 
these values will be used subsequently to determine A a n d f  ( a ) .  

The two ways of plotting (ai, da/dtl,  Ti ) data, illustrated in Figs 1 and 2 
are equivalent. If one uses the same sort of regression analysis on the same 
sets of data, then, of course, the two plots will yield identical values for the 
parameters, E/R and the various l nA f  (a)i. 
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The first important feature of isoconversional methods such as this one is 
that the applicability of the basic equation, Eq. (9) is tested. If the isocon- 
versional lines in Figs 1 and 2 are curved, then the kinetics are too complex 
to be described by Eq. (9) and meaningful values for the parameters E/R 
and In A can not be obtained. (However, if the data are extensive enough, 
there may be regions in a-temperature space in which sets of straight 
isoeonversional lines can be found and values of E/R and A calculated for 
that portion of the reaction.) 

T, 
600 620 640 660 680 ?O().D. 

-5 % 
x 

t~ 
E w 

Fig,. 2 Ti In (da/dr  )i vs. Ti for a first order reaction, E/R = 20.000 K, lnA = 25, at isothermal 
temperatures of  600, 620, 640, 660, 680 and 700 K, a=0 .05 ,  .0.20, 0.40, 0.60, 0.80, 0.90 
and 0.95 

The examples given above are for a series of isothermal experiments at 
differing temperatures. It is more common to perform thermal analysis ex- 
periment s at constant heating rate. An isoconversional plot for a series of 
experiments at differing constant heating rates will differ form Figs 1 and 2 
in that, as a increases, the T and 1/T points will be skewed to higher 
temperatures especially at faster heating rates. An example of such a plot is 
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shown in Fig. 3 for an autocatalytic reaction [7]. The rates for autocatalytic 
reactions are the greatest during a middle portion of the reaction, in this 
ease, for a = 0.5 to 0.7. However, one does not obtain a neat progression of 
decreasing parallel isoconversional lines even for kinetics in which the 
isothermal rate decreases monotonically with time since the rate is ac- 
celerated through a maximum value in all constant heating rate experiments. 

4.5 
"O 

4.0 

35 

30 

2.5 

2.C 
1.30 

C 
0.95 

I ] I r I I 
1.32 1.3/, 1.36 1.38 1.40 1.42 

1 3 T,xlO K 

Fig. 3 In (da/dt )i vs. 1/~q for  an autocata ly t ic  react ion ,  E/R = 30.196 K, InA = 34.54, at  h e a t i n g  
rates  o f  0.05, 0.10 and 0.20 deg/see. C = 1 --a=0.04, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 
0.80, 0.90 and 0.95. (See Ref. 7, p. 511, Fig. 16) 

As was pointed out earlier, data from any set of experiments performed 
under differing temperature programs (isothermal, constant heating rate, 
stepwise, or whatever) may be plotted in the above manner so that EIR and 
lnAd(a )/dt values can be obtained over the temperature - conversion range 
covered by the experimental data. The advantage of using data from sets of 
isothermal experiments performed at various temperatures or constant heat- 
ing rate experiments performed at various heating rates is that a systematic 
distribution of data points over the experimental ranges is obtained in such 
plots as shown in Figs 1, 2 and 3. 
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b) Point of intersection (concurrence): 

However,  one should not use only a set of isothermal experiments or a 
set of constant heating rate experiments. When sets of experiments with 
mixed temperature programs are employed in obtaining thermal analytical 
data, points of degeneracy will occur which have identical values for 
temperature and conversion, (1--a). These points of intersection or concur- 
rence can be used to test the assumption of equation 9) that the rate of reac- 
tion depends only upon the analytical forms of k ( T )  and F ( a )  and, 
therefore, is path independent [11, 12]. If two or more experiments which 
differ only in their temperature programs come to the same temperature at 
the same degree of conversion, then their rates of conversion at that point 
should be equal if the kinetics follow Eq. (9). If the values for the rate at this 
point are significantly different from one another, then the true rate equa- 
tion must be more complex than Eq. (9) and the significance of the 
parameters (E/R and lnA ) obtained from Eq. (9) are suspect. 

Therefore it should be standard practice to include one isothermal ex- 
periment with a set of constant heating rate experiments or one constant 
heating rate experiment with a set of isothermal experiments. In the former 
case, a properly chosen isothermal curve will intersect each of the constant 
heating rate curves in conversion-temperature space and the independence 
of the value for the rate from its thermal history tested at each of these in- 
tersections. In the latter case, the constant heating rate curve will intersect 
each of the isothermal curves producing similar points at which to test the 
thermal path independence of the rate. 

e) Calculation of the preexponential factor, A: 

Once the constancy of the parameter, E/R, has been established, the 
values of In Af (al) from the differential isoconversional method can be ex- 
trapolated to zero a to obtain the preexponential factor, A, for many cases, 
viz., whenever the limit o f f  ( a )  as a approaches zero is unity as in Eq. (12). 

l i m f ( a )  =f(a  = 0)  = 1 (12) 
a - ~ 0  

This condition is met for many of the equations used f o r f ( a  ) in thermal 
analysis kinetics including Eq. (4) for a nth order reaction. Moreover, the 
definition of In A is empirical in thermal analysis kinetics, so if the limit of 
f ( a )  in Eq. (12) is equal to any constant, In B, then In A may be redefined 
to incorporate this constant. This is permissible since A is not a simple "fre- 
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quency factor" in thermal analysis but may include other geometrical and 
physical factors which affect the rate. The distinction between the lnA value 
from the extrapolation in Fig. 4 (below) and some "true" value for In A 
would matter only in a detailed modeling of the reaction mechanism and not 
in the analytical curve fitting described in this paper. 

Fig. 4 l n f ( a )  vs. In(1 - a )  for f ( a  ) --(1 --a) 3, (1 - a )  2, (1 --a), 1, (1 --a) -1, (1 --r 3-, 
(1 --a )-3, 1/(1 +a  ) and a (1 --a ) 

Thus, if one obtains values of In Af (a)i from the intercepts of Fig. 1 or 
from the slopes of Fig. 2 for various values of ai, then a plot of In Af (a)i as a 
function of In (1--a)i, as shown in Fig. 4, will have an extrapolated intercept 
at a = 0 equal to lnA. 

All of the "nth order" curves and one other thrown in as an example, 
f (a  ) =  1/(1--a ), in Fig. 4 are "well behaved", that is, they satisfy the 
criterion of Eq. (12). The chief type of functions for f ( a )  which do not fol- 
low the condition defined by Eq. (12) are those used to describe the kinetics 
of some autocatalytic reactions. These reaction are often fitted to an equa- 
tion such as 
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f ( a )  = (1--a)n(a)  m (13) 

The plot of such an autocatalytic function, for the equation 
f ( a ) = (1 - a ) ( a ), is shown by the curving line in Fig. 4. Extrapolation to 
a equal zero can not be performed for this case since the logarithm of zero 
is minus infinity. It is, of course, obvious that Eq. (13) can not possibly 
describe the kinetics at a equal zero and it has been suggested that a better 
expression for this type of kinetics behavior is 

f (a) = (l--a)n(a + e )m (14) 

where e < < 1. This form may be more satisfying mathematically but does not 
help in the extrapolation since this function changes very rapidly until a ap- 
proaches e in magnitude at which point a is at too small a value to permit 
measurement of the rate. 

(There are many autocatalytic reactions for which the initial rate is large 
enough to be measured so that lnA can be determined by the above method. 
Weight loss reactions for the random degradation of polymers are auto- 
catalytic. However, the magnitude of the initial rate is often about a third of 
the maximum rate as the former depends upon the maximum size of frag- 
ments which can distill from the reacting system. See, for example, cases B 
and C in Ref. [7].) 

In general, the above extrapolation can be performed for most of the 
forms o f f  ( a )  used in thermal analysis kinetics including those for nth order 
reactions shown in Fig. 4. The chief advantage of this method for determin- 
ing lnA over others is it that the algebraic form o f f  ( a )  need not be known. 
This has been a flaw of many previous methods for determining In A which 
posit first order kinetics during its calculation. 

d) Calculation of order of reaction, n: 

In Fig. 4, l n f  (re)i is plotted v s .  In (1--a)~ for reaction orders, n = 3, 2, 1, 
0, -1, -2, and -3. From the logarithm of Eq. (4), 

l n f ( a )  = n ha ( l - a ) ,  (12) 

it is obvious that, as a bonus from the above method for determining lnA, 
the slopes of these curves are equal to the reaction order, n. Therefore, we 
have a method for determining the reaction order in a nonsubjeetive man- 
ner, that is, without "testing various integer orders for fit" as is done when 
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in teg ra ted  equa t ions  a re  used.  Thus  non in tege r  o rde r s  can be  d e t e r m i n e d  
and  any devia t ion f rom the simple n th  o rde r  kinet ics  of  E q s  (4) and  (12) will 

be  exposed  immedia te ly  by the nonl inear i ty  of  the slope.  

T h e  ex t rapo la t ion  of lnAf  (a) vs. (o the r  funct ions  of  a )  curves to  a = 0 

in o rde r  to de t e rmine  the p a r a m e t e r s  for  o the r  m o r e  complex  m a t h e m a t i c a l  

express ions  for  the reac t ion  kinet ics  will be  discussed in a subsequen t  publi-  
ca t ion  [1]. 

Conclusions 

T h e  genera l  d i f ferent ia l  i soconvers iona l  m e t h o d  for  the de t e rmina t ion  of  
p a r a m e t e r s  for  the rmal  analysis kinetics contains  many  sa feguards  against  
its misuse;  a) the l inear i ty  of  the  i soconvers ional  curves (as in Figs. 1, 2 and  

3) test  the  cons tancy  of  E/R and  lnA,  b) the l ineari ty of  the l n A f ( a )  vs. 
In ( 1 - a )  curves  (as in Fig. 4) tes t  the appl icabi l i ty  of  the n th  o r d e r  equat ion ,  

and  c) points  of  in te rsec t ion  test  t he rm a l  his tory i n d e p e n d e n c e  of  the  r a t e  of  

react ion.  

References 

1 J. H. Flynn, to be published. 
2 J. H. van't Hoff, Etudes de dynamique chimique, F. M/~Uer and Company, Amsterdam 1884, p. 87. 
3 M. Letort, J. Chim. Phys., 34 (1937) 206. 
4 H. Friedman, J. Polym. Sci., 50 (1965) 183. 
5 T. Ozawa, Bull. Chem. Soc. Japan, 38 (1965) 1881. 
6 J. H. Flyan and L A. Wall, Polym. Lett., 4 (1966) 191. 
7 J. H. Flynn and g A. Wall, J. Res. Nat. Bur. Standards A Phys. Chem., 70A (1966) 487. 
8 J. H. Ftynn, J. Thermal Anal., 27 (1983) 95. 
9 T. Ozawa, J. Thermal Anal., 31 (1986) 547; Thermochim. Acta, 100 (1986) 109. 

10 J. Elder, J. Thermal Anal., 36 (1990) 1077. 
11 J. H. Flynn, Analysis of Thermogravimetric Kinetics - Overcoming Complications of Thermal 

Histoxy, Chapter 3 in Thermal Analysis in Polymer Characterization, ed. E. A. Turi, Hayden, 
London, 1981, pp. 43-58. 

12 J. H. Flynn, J. Thermal Anal., 34 (1988) 367. 

Zusammenfassung ~ Es wurde ein allgemeines Differcntialverfahren entwickelt und be- 
schrieben, das die Arrheniusschen Parameter, namentlich die Aktivierungsenergie und den 
priiexponentiellen Faktor, als Funktion des Umsetzungsgrades aus Angaben fiber zwei oder 
mehrere Experimente mit verschiedenen Temperaturprogrammen beschreibt. (Diese Experi- 
mente k6nnen mit beliebigen Kombinationen aus isothermen Temperaturprogrammen, sol- 
chen mit konstanter Aufheizgeschwindigkeit oder anderen Temperaturprogrammen 
durchgeffihrt werden.) Das Verfahren iiberprfift, o13 die Kinetik dutch die Gleichung 
f(a) = (1 -r n beschrieben werden kann und berechnet die richtige Reaktionsordnung n, 
wenn eine solche Gleichung anwendbar ist. Die richtige Aktivierungsenergie E wird als 
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Funkt ion  yon Tempera tu r  und Umsatz  best immt.  Der  richtige prtiexponentielle Ausdruck 
wird fiir aUe beschr iebencn  Ftille mittels  der  Gleichung d(a) /d t  = f (a)A exp (-E/RT) berech- 
net .  E ine  Ausnahmr  bi ldet  der  Fall "Autokatalyse", w o b e i f ( a  -- 0) -- 0 gilt. Die Berechnung 
de r  Pa ramete r  far  Gleichungcn mit anderen  Funkt ionen fiir f(a) wird in einem sp[iteren 
Manuskr ipt  beschricben.  
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